Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 45(1): 172-179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480250

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) is associated with uncontrolled inflammatory responses. Loss of pulmonary angiotensin-converting enzyme 2 (ACE2) function has been associated with SARS-CoV-2 infection. The aberrant signalling and dysregulated inflammation characteristic of lung cancer have marked similarities with SARS-CoV-2 infection. Spearman's correlation analysis of The Cancer Genome Atlas (TCGA) datasets indicated an inverse correlation between ACE2 and IL6 in lung adenocarcinoma. qRT-PCR analysis revealed CoV-2-SRBD-mediated diminished ACE2 expression in lung cancer cells that was concomitant with increased IL6 expression. Western blot and qRT-PCR analysis suggested that treatment with methotrexate (MTx) dampened CoV-2-SRBD-mediated increase in JAK1/STAT3 phosphorylation, gp130, IL6, and folate-binding protein (FBP) expressions. MTx also rescued the diminished expression of ACE2 in CoV-2-SRBD transfected cells. As lung tissue injury in severely affected COVID-19 patients is characterised by aberrant inflammatory response, repurposing MTx as an effective therapy against critical regulators of inflammation in SARS-CoV-2 infection warrants investigation.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , Ácido Glicirrízico/uso terapêutico , Imunossupressores/uso terapêutico , Interleucina-6/biossíntese , Metotrexato/uso terapêutico , Células A549 , Adenocarcinoma de Pulmão/patologia , Anti-Inflamatórios/uso terapêutico , COVID-19/imunologia , COVID-19/patologia , Linhagem Celular Tumoral , Receptor gp130 de Citocina/biossíntese , Receptor 2 de Folato/biossíntese , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , Humanos , Interleucina-6/imunologia , Janus Quinase 1/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Protein Expr Purif ; 149: 17-22, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29654824

RESUMO

Human folate receptors (hFRα and hFRß) are membrane proteins anchored to the cell surface by glycosylphosphatidylinositol. They play an important role in cell growth by taking up folate for de novo synthesis of purines and methylation of DNA, lipids, and proteins. Thus, controlling folate uptake through hFRs may lead to the development of anti-cancer drugs. Development of hFRs-targeting drug requires a large amount of hFRs. However, it is difficult to prepare active forms of hFRs from prokaryotic cells because of their high content of cysteine residues that form disulfide bonds. Here, we prepared active forms of hFRα and hFRß from inclusion bodies of Escherichia coli. The crucial steps in our preparation were intensive washing of the inclusion bodies to remove impurities derived from E. coli and gradual dropping of solubilized hFRs into refolding buffers to correctly reform disulfide bonds. The binding activity of prepared hFRs to folate was confirmed by biolayer interferometry measurements. Finally, we successfully prepared the active form of 2.52 mg hFRα and 2.4 mg hFRß from 10 g of E. coli cell bodies.


Assuntos
Receptor 1 de Folato/biossíntese , Receptor 2 de Folato/biossíntese , Dobramento de Proteína , Escherichia coli , Receptor 1 de Folato/genética , Receptor 2 de Folato/genética , Expressão Gênica , Humanos , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
3.
Nanomedicine ; 12(4): 1113-1126, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26733257

RESUMO

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor ß (FRß). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. FROM THE CLINICAL EDITOR: Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Fólico/metabolismo , Nanopartículas/uso terapêutico , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Receptor 2 de Folato/biossíntese , Receptor 2 de Folato/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...